brakeless is required for lamina targeting of R1-R6 axons in the Drosophila visual system.
نویسندگان
چکیده
Photoreceptors in the Drosophila eye project their axons retinotopically to targets in the optic lobe of the brain. The axons of photoreceptor cells R1-R6 terminate in the first optic ganglion, the lamina, while R7 and R8 axons project through the lamina to terminate in distinct layers of the second ganglion, the medulla. Here we report the identification of the gene brakeless (bks) and show that its function is required in the developing eye specifically for the lamina targeting of R1-R6 axons. In mosaic animals lacking bks function in the eye, R1-R6 axons project through the lamina to terminate in the medulla. Other aspects of visual system development appear completely normal: photoreceptor and lamina cell fates are correctly specified, R7 axons correctly target the medulla, and both correctly targeted R7 axons and mistargeted R1-R6 axons maintain their retinotopic order with respect to both anteroposterior and dorsoventral axes. bks encodes two unusually hydrophilic nuclear protein isoforms, one of which contains a putative C(2)H(2) zinc finger domain. Transgenic expression of either Bks isoform is sufficient to restore the lamina targeting of R1-R6 axons in bks mosaics, but not to retarget R7 or R8 axons to the lamina. These data demonstrate the existence of a lamina-specific targeting mechanism for R1-R6 axons in the Drosophila visual system, and provide the first entry point in the molecular characterization of this process.
منابع مشابه
Gogo Receptor Contributes to Retinotopic Map Formation and Prevents R1-6 Photoreceptor Axon Bundling
BACKGROUND Topographic maps form the basis of neural processing in sensory systems of both vertebrate and invertebrate species. In the Drosophila visual system, neighboring R1-R6 photoreceptor axons innervate adjacent positions in the first optic ganglion, the lamina, and thereby represent visual space as a continuous map in the brain. The mechanisms responsible for the establishment of retinot...
متن کاملThe receptor tyrosine kinase Off-track is required for layer-specific neuronal connectivity in Drosophila.
The nervous system in many species consists of multiple neuronal cell layers, each forming specific connections with neurons in other layers or other regions of the brain. How layer-specific connectivity is established during development remains largely unknown. In the Drosophila adult visual system, photoreceptor (R cell) axons innervate one of two optic ganglia layers; R1-R6 axons connect to ...
متن کاملAnalysis of Drosophila photoreceptor axon guidance in eye-specific mosaics.
During development of the adult Drosophila visual system, axons of the eight photoreceptors in each ommatidium fasciculate together and project as a single bundle towards the optic lobes of the brain. Within the brain, individual photoreceptor axons from each bundle then seek specific targets in distinct layers of the optic lobes. The axons of photoreceptors R1-R6 terminate in the lamina, while...
متن کاملGlial Cells Mediate Target Layer Selection of Retinal Axons in the Developing Visual System of Drosophila
In the fly visual system, each class of photoreceptor neurons (R cells) projects to a different synaptic layer in the brain. R1-R6 axons terminate in the lamina, while R7 and R8 axons pass through the lamina and stop in the medulla. As R cell axons enter the lamina, they encounter both glial cells and neurons. The cellular requirement for R1-R6 targeting was determined using loss-of-function mu...
متن کاملRetinal Axon Target Selection in Drosophila Is Regulated by a Receptor Protein Tyrosine Phosphatase
Different Drosophila photoreceptors (R cells) connect to neurons in different optic lobe layers. R1-R6 axons project to the lamina; R7 and R8 axons project to separate layers of the medulla. We show a receptor tyrosine phosphatase, PTP69D, is required for lamina target specificity. In Ptp69D mutants, R1-R6 project through the lamina, terminating in the medulla. Genetic mosaics, transgene rescue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 127 11 شماره
صفحات -
تاریخ انتشار 2000